ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.09609
19
7

Neural Transition-based Syntactic Linearization

23 October 2018
Linfeng Song
Yue Zhang
D. Gildea
ArXivPDFHTML
Abstract

The task of linearization is to find a grammatical order given a set of words. Traditional models use statistical methods. Syntactic linearization systems, which generate a sentence along with its syntactic tree, have shown state-of-the-art performance. Recent work shows that a multi-layer LSTM language model outperforms competitive statistical syntactic linearization systems without using syntax. In this paper, we study neural syntactic linearization, building a transition-based syntactic linearizer leveraging a feed-forward neural network, observing significantly better results compared to LSTM language models on this task.

View on arXiv
Comments on this paper