52
20

Named Entity Disambiguation using Deep Learning on Graphs

Abstract

We tackle \ac{NED} by comparing entities in short sentences with \wikidata{} graphs. Creating a context vector from graphs through deep learning is a challenging problem that has never been applied to \ac{NED}. Our main contribution is to present an experimental study of recent neural techniques, as well as a discussion about which graph features are most important for the disambiguation task. In addition, a new dataset (\wikidatadisamb{}) is created to allow a clean and scalable evaluation of \ac{NED} with \wikidata{} entries, and to be used as a reference in future research. In the end our results show that a \ac{Bi-LSTM} encoding of the graph triplets performs best, improving upon the baseline models and scoring an \rm{F1} value of 91.6%91.6\% on the \wikidatadisamb{} test set

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.