ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.08705
15
185

Synscapes: A Photorealistic Synthetic Dataset for Street Scene Parsing

19 October 2018
Magnus Wrenninge
Jonas Unger
ArXivPDFHTML
Abstract

We introduce Synscapes -- a synthetic dataset for street scene parsing created using photorealistic rendering techniques, and show state-of-the-art results for training and validation as well as new types of analysis. We study the behavior of networks trained on real data when performing inference on synthetic data: a key factor in determining the equivalence of simulation environments. We also compare the behavior of networks trained on synthetic data and evaluated on real-world data. Additionally, by analyzing pre-trained, existing segmentation and detection models, we illustrate how uncorrelated images along with a detailed set of annotations open up new avenues for analysis of computer vision systems, providing fine-grain information about how a model's performance changes according to factors such as distance, occlusion and relative object orientation.

View on arXiv
Comments on this paper