ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.08699
16
9

pioNER: Datasets and Baselines for Armenian Named Entity Recognition

19 October 2018
Tsolak Ghukasyan
G. Davtyan
K. Avetisyan
I. Andrianov
ArXivPDFHTML
Abstract

In this work, we tackle the problem of Armenian named entity recognition, providing silver- and gold-standard datasets as well as establishing baseline results on popular models. We present a 163000-token named entity corpus automatically generated and annotated from Wikipedia, and another 53400-token corpus of news sentences with manual annotation of people, organization and location named entities. The corpora were used to train and evaluate several popular named entity recognition models. Alongside the datasets, we release 50-, 100-, 200-, 300-dimensional GloVe word embeddings trained on a collection of Armenian texts from Wikipedia, news, blogs, and encyclopedia.

View on arXiv
Comments on this paper