ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.08649
18
33

The Optimal ANN Model for Predicting Bearing Capacity of Shallow Foundations Trained on Scarce Data

22 September 2018
Marta Baginska
P. Srokosz
    AI4CE
ArXivPDFHTML
Abstract

This study is focused on determining the potential of using deep neural networks (DNNs) to predict the ultimate bearing capacity of shallow foundation in situations when the experimental data which may be used to train networks is scarce. Two experiments involving testing over 17000 networks were conducted. The first experiment was aimed at comparing the accuracy of shallow neural networks and DNNs predictions. It shows that when the experimental dataset used for preparing models is small then DNNs have a significant advantage over shallow networks. The second experiment was conducted to compare the performance of DNNs consisting of different number of neurons and layers. Obtained results indicate that the optimal number of layers varies between 5 to 7. Networks with less and - surprisingly - more layers obtain lower accuracy. Moreover, the number of neurons in DNN has a lower impact on the prediction accuracy than the number of DNN's layers. DNNs perform very well, even when trained with only 6 samples. Basing on the results it seems that when predicting the ultimate bearing capacity with ANN models obtaining small but high-quality experimental training datasets instead of large training datasets affected by a higher error is an advisable approach.

View on arXiv
Comments on this paper