ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.08307
15
0

Reduction of Parameter Redundancy in Biaffine Classifiers with Symmetric and Circulant Weight Matrices

18 October 2018
Tomoki Matsuno
Katsuhiko Hayashi
Takahiro Ishihara
Hitoshi Manabe
Yuji Matsumoto
ArXiv (abs)PDFHTML
Abstract

Currently, the biaffine classifier has been attracting attention as a method to introduce an attention mechanism into the modeling of binary relations. For instance, in the field of dependency parsing, the Deep Biaffine Parser by Dozat and Manning has achieved state-of-the-art performance as a graph-based dependency parser on the English Penn Treebank and CoNLL 2017 shared task. On the other hand, it is reported that parameter redundancy in the weight matrix in biaffine classifiers, which has O(n^2) parameters, results in overfitting (n is the number of dimensions). In this paper, we attempted to reduce the parameter redundancy by assuming either symmetry or circularity of weight matrices. In our experiments on the CoNLL 2017 shared task dataset, our model achieved better or comparable accuracy on most of the treebanks with more than 16% parameter reduction.

View on arXiv
Comments on this paper