ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.07550
25
3

The Newton Scheme for Deep Learning

16 October 2018
Junqing Qiu
Guoren Zhong
Yihua Lu
Kun Xin
Huihuan Qian
Xi Zhu
    PINN
ArXivPDFHTML
Abstract

We introduce a neural network (NN) strictly governed by Newton's Law, with the nature required basis functions derived from the fundamental classic mechanics. Then, by classifying the training model as a quick procedure of 'force pattern' recognition, we developed the Newton physics-based NS scheme. Once the force pattern is confirmed, the neuro network simply does the checking of the 'pattern stability' instead of the continuous fitting by computational resource consuming big data-driven processing. In the given physics's law system, once the field is confirmed, the mathematics bases for the force field description actually are not diverged but denumerable, which can save the function representations from the exhaustible available mathematics bases. In this work, we endorsed Newton's Law into the deep learning technology and proposed Newton Scheme (NS). Under NS, the user first identifies the path pattern, like the constant acceleration movement.The object recognition technology first loads mass information, then, the NS finds the matched physical pattern and describe and predict the trajectory of the movements with nearly zero error. We compare the major contribution of this NS with the TCN, GRU and other physics inspired 'FIND-PDE' methods to demonstrate fundamental and extended applications of how the NS works for the free-falling, pendulum and curve soccer balls.The NS methodology provides more opportunity for the future deep learning advances.

View on arXiv
Comments on this paper