ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.06673
11
3

Named-Entity Linking Using Deep Learning For Legal Documents: A Transfer Learning Approach

15 October 2018
Ahmed Elnaggar
Robin Otto
Florian Matthes
    AILaw
ArXivPDFHTML
Abstract

In the legal domain it is important to differentiate between words in general, and afterwards to link the occurrences of the same entities. The topic to solve these challenges is called Named-Entity Linking (NEL). Current supervised neural networks designed for NEL use publicly available datasets for training and testing. However, this paper focuses especially on the aspect of applying transfer learning approach using networks trained for NEL to legal documents. Experiments show consistent improvement in the legal datasets that were created from the European Union law in the scope of this research. Using transfer learning approach, we reached F1-score of 98.90\% and 98.01\% on the legal small and large test dataset.

View on arXiv
Comments on this paper