ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.06621
8
65

Adversarial Inpainting of Medical Image Modalities

15 October 2018
Karim Armanious
Youssef Mecky
S. Gatidis
Bin Yang
    GAN
    MedIm
ArXivPDFHTML
Abstract

Numerous factors could lead to partial deteriorations of medical images. For example, metallic implants will lead to localized perturbations in MRI scans. This will affect further post-processing tasks such as attenuation correction in PET/MRI or radiation therapy planning. In this work, we propose the inpainting of medical images via Generative Adversarial Networks (GANs). The proposed framework incorporates two patch-based discriminator networks with additional style and perceptual losses for the inpainting of missing information in realistically detailed and contextually consistent manner. The proposed framework outperformed other natural image inpainting techniques both qualitatively and quantitatively on two different medical modalities.

View on arXiv
Comments on this paper