ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.05598
80
4
v1v2v3v4v5 (latest)

Interpretable Fairness via Target Labels in Gaussian Process Models

12 October 2018
T. Kehrenberg
Zexun Chen
Novi Quadrianto
ArXiv (abs)PDFHTML
Abstract

Addressing fairness in machine learning models has recently attracted a lot of attention, as it will ensure continued confidence of the general public in the deployment of machine learning systems. Here, we focus on mitigating harm of a biased system that offers much better quality outputs for certain groups than for others. We show that bias in the output can naturally be handled in Gaussian process classification (GPC) models by introducing a latent target output that will modulate the likelihood function. This simple formulation has several advantages: first, it is a unified framework for several notions of fairness (demographic parity, equalized odds, and equal opportunity); second, it allows encoding our knowledge of what the bias in outputs should be; and third, it can be solved by using off-the-shelf GPC packages.

View on arXiv
Comments on this paper