ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.04937
65
9
v1v2 (latest)

Location Dependency in Video Prediction

11 October 2018
Niloofar Azizi
Hafez Farazi
Sven Behnke
ArXiv (abs)PDFHTML
Abstract

Deep convolutional neural networks are used to address many computer vision problems, including video prediction. The task of video prediction requires analyzing the video frames, temporally and spatially, and constructing a model of how the environment evolves. Convolutional neural networks are spatially invariant, though, which prevents them from modeling location-dependent patterns. In this work, the authors propose location-biased convolutional layers to overcome this limitation. The effectiveness of location bias is evaluated on two architectures: Video Ladder Network (VLN) and Convolutional redictive Gating Pyramid (Conv-PGP). The results indicate that encoding location-dependent features is crucial for the task of video prediction. Our proposed methods significantly outperform spatially invariant models.

View on arXiv
Comments on this paper