ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.03218
27
24

Principled Deep Neural Network Training through Linear Programming

7 October 2018
D. Bienstock
Gonzalo Muñoz
Sebastian Pokutta
ArXivPDFHTML
Abstract

Deep learning has received much attention lately due to the impressive empirical performance achieved by training algorithms. Consequently, a need for a better theoretical understanding of these problems has become more evident in recent years. In this work, using a unified framework, we show that there exists a polyhedron which encodes simultaneously all possible deep neural network training problems that can arise from a given architecture, activation functions, loss function, and sample-size. Notably, the size of the polyhedral representation depends only linearly on the sample-size, and a better dependency on several other network parameters is unlikely (assuming P≠NPP\neq NPP=NP). Additionally, we use our polyhedral representation to obtain new and better computational complexity results for training problems of well-known neural network architectures. Our results provide a new perspective on training problems through the lens of polyhedral theory and reveal a strong structure arising from these problems.

View on arXiv
Comments on this paper