ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.03068
12
111

Geometric Scattering for Graph Data Analysis

7 October 2018
Feng Gao
Guy Wolf
M. Hirn
    GNN
ArXivPDFHTML
Abstract

We explore the generalization of scattering transforms from traditional (e.g., image or audio) signals to graph data, analogous to the generalization of ConvNets in geometric deep learning, and the utility of extracted graph features in graph data analysis. In particular, we focus on the capacity of these features to retain informative variability and relations in the data (e.g., between individual graphs, or in aggregate), while relating our construction to previous theoretical results that establish the stability of similar transforms to families of graph deformations. We demonstrate the application the our geometric scattering features in graph classification of social network data, and in data exploration of biochemistry data.

View on arXiv
Comments on this paper