ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01344
4
3

Unsupervised Emergence of Spatial Structure from Sensorimotor Prediction

2 October 2018
Alban Laflaquière
Michael Garcia Ortiz
ArXivPDFHTML
Abstract

Despite its omnipresence in robotics application, the nature of spatial knowledge and the mechanisms that underlie its emergence in autonomous agents are still poorly understood. Recent theoretical work suggests that the concept of space can be grounded by capturing invariants induced by the structure of space in an agent's raw sensorimotor experience. Moreover, it is hypothesized that capturing these invariants is beneficial for a naive agent trying to predict its sensorimotor experience. Under certain exploratory conditions, spatial representations should thus emerge as a byproduct of learning to predict. We propose a simple sensorimotor predictive scheme, apply it to different agents and types of exploration, and evaluate the pertinence of this hypothesis. We show that a naive agent can capture the topology and metric regularity of its spatial configuration without any a priori knowledge, nor extraneous supervision.

View on arXiv
Comments on this paper