ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.00136
36
4

FusedLSTM: Fusing frame-level and video-level features for Content-based Video Relevance Prediction

29 September 2018
Yash Bhalgat
ArXivPDFHTML
Abstract

This paper describes two of my best performing approaches on the Content-based Video Relevance Prediction challenge. In the FusedLSTM based approach, the inception-pool3 and the C3D-pool5 features are combined using an LSTM and a dense layer to form embeddings with the objective to minimize the triplet loss function. In the second approach, an Online Kernel Similarity Learning method is proposed to learn a non-linear similarity measure to adhere the relevance training data. The last section gives a complete comparison of all the approaches implemented during this challenge, including the one presented in the baseline paper.

View on arXiv
Comments on this paper