ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.10787
54
74

Complexity of Training ReLU Neural Network

27 September 2018
Digvijay Boob
Santanu S. Dey
Guanghui Lan
ArXivPDFHTML
Abstract

In this paper, we explore some basic questions on the complexity of training neural networks with ReLU activation function. We show that it is NP-hard to train a two-hidden layer feedforward ReLU neural network. If dimension of the input data and the network topology is fixed, then we show that there exists a polynomial time algorithm for the same training problem. We also show that if sufficient over-parameterization is provided in the first hidden layer of ReLU neural network, then there is a polynomial time algorithm which finds weights such that output of the over-parameterized ReLU neural network matches with the output of the given data.

View on arXiv
Comments on this paper