In this paper, we explore some basic questions on the complexity of training neural networks with ReLU activation function. We show that it is NP-hard to train a two-hidden layer feedforward ReLU neural network. If dimension of the input data and the network topology is fixed, then we show that there exists a polynomial time algorithm for the same training problem. We also show that if sufficient over-parameterization is provided in the first hidden layer of ReLU neural network, then there is a polynomial time algorithm which finds weights such that output of the over-parameterized ReLU neural network matches with the output of the given data.
View on arXiv