ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.09419
14
33

Explainable PCGML via Game Design Patterns

25 September 2018
Matthew J. Guzdial
Josh Reno
Jonathan Chen
Gillian Smith
Mark O. Riedl
ArXivPDFHTML
Abstract

Procedural content generation via Machine Learning (PCGML) is the umbrella term for approaches that generate content for games via machine learning. One of the benefits of PCGML is that, unlike search or grammar-based PCG, it does not require hand authoring of initial content or rules. Instead, PCGML relies on existing content and black box models, which can be difficult to tune or tweak without expert knowledge. This is especially problematic when a human designer needs to understand how to manipulate their data or models to achieve desired results. We present an approach to Explainable PCGML via Design Patterns in which the design patterns act as a vocabulary and mode of interaction between user and model. We demonstrate that our technique outperforms non-explainable versions of our system in interactions with five expert designers, four of whom lack any machine learning expertise.

View on arXiv
Comments on this paper