ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.09244
16
8

No Multiplication? No Floating Point? No Problem! Training Networks for Efficient Inference

24 September 2018
S. Baluja
David Marwood
Michele Covell
Nick Johnston
    MQ
ArXivPDFHTML
Abstract

For successful deployment of deep neural networks on highly--resource-constrained devices (hearing aids, earbuds, wearables), we must simplify the types of operations and the memory/power resources used during inference. Completely avoiding inference-time floating-point operations is one of the simplest ways to design networks for these highly-constrained environments. By discretizing both our in-network non-linearities and our network weights, we can move to simple, compact networks without floating point operations, without multiplications, and avoid all non-linear function computations. Our approach allows us to explore the spectrum of possible networks, ranging from fully continuous versions down to networks with bi-level weights and activations. Our results show that discretization can be done without loss of performance and that we can train a network that will successfully operate without floating-point, without multiplication, and with less RAM on both regression tasks (auto encoding) and multi-class classification tasks (ImageNet). The memory needed to deploy our discretized networks is less than one third of the equivalent architecture that does use floating-point operations.

View on arXiv
Comments on this paper