ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.06222
13
408

GANs for Medical Image Analysis

13 September 2018
Salome Kazeminia
Christoph Baur
Arjan Kuijper
Bram van Ginneken
Nassir Navab
Shadi Albarqouni
Anirban Mukhopadhyay
    MedIm
    AI4CE
ArXivPDFHTML
Abstract

Generative Adversarial Networks (GANs) and their extensions have carved open many exciting ways to tackle well known and challenging medical image analysis problems such as medical image de-noising, reconstruction, segmentation, data simulation, detection or classification. Furthermore, their ability to synthesize images at unprecedented levels of realism also gives hope that the chronic scarcity of labeled data in the medical field can be resolved with the help of these generative models. In this review paper, a broad overview of recent literature on GANs for medical applications is given, the shortcomings and opportunities of the proposed methods are thoroughly discussed and potential future work is elaborated. We review the most relevant papers published until the submission date. For quick access, important details such as the underlying method, datasets and performance are tabulated. An interactive visualization which categorizes all papers to keep the review alive, is available at http://livingreview.in.tum.de/GANs_for_Medical_Applications.

View on arXiv
Comments on this paper