ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.06201
16
15

Player Experience Extraction from Gameplay Video

6 September 2018
Zijin Luo
Matthew J. Guzdial
N. Liao
Mark O. Riedl
ArXivPDFHTML
Abstract

The ability to extract the sequence of game events for a given player's play-through has traditionally required access to the game's engine or source code. This serves as a barrier to researchers, developers, and hobbyists who might otherwise benefit from these game logs. In this paper we present two approaches to derive game logs from game video via convolutional neural networks and transfer learning. We evaluate the approaches in a Super Mario Bros. clone, Mega Man and Skyrim. Our results demonstrate our approach outperforms random forest and other transfer baselines.

View on arXiv
Comments on this paper