ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.06059
16
369

Model-Driven Deep Learning for Physical Layer Communications

17 September 2018
Hengtao He
Shi Jin
Chao-Kai Wen
F. Gao
Geoffrey Ye Li
Zongben Xu
    AI4CE
ArXivPDFHTML
Abstract

Intelligent communication is gradually considered as the mainstream direction in future wireless communications. As a major branch of machine learning, deep learning (DL) has been applied in physical layer communications and has demonstrated an impressive performance improvement in recent years. However, most of the existing works related to DL focus on data-driven approaches, which consider the communication system as a black box and train it by using a huge volume of data. Training a network requires sufficient computing resources and extensive time, both of which are rarely found in communication devices. By contrast, model-driven DL approaches combine communication domain knowledge with DL to reduce the demand for computing resources and training time. This article reviews the recent advancements in the application of model-driven DL approaches in physical layer communications, including transmission scheme, receiver design, and channel information recovery. Several open issues for further research are also highlighted after presenting the comprehensive survey.

View on arXiv
Comments on this paper