ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.05864
10
56

In Defense of the Classification Loss for Person Re-Identification

16 September 2018
Y. Zhai
Xun Guo
Yan Lu
Houqiang Li
ArXivPDFHTML
Abstract

The recent research for person re-identification has been focused on two trends. One is learning the part-based local features to form more informative feature descriptors. The other is designing effective metric learning loss functions such as the triplet loss family. We argue that learning global features with classification loss could achieve the same goal, even with some simple and cost-effective architecture design. In this paper, we first explain why the person re-id framework with standard classification loss usually has inferior performance compared to metric learning. Based on that, we further propose a person re-id framework featured by channel grouping and multi-branch strategy, which divides global features into multiple channel groups and learns the discriminative channel group features by multi-branch classification layers. The extensive experiments show that our framework outperforms prior state-of-the-arts in terms of both accuracy and inference speed.

View on arXiv
Comments on this paper