ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.05689
14
2

Attention as a Perspective for Learning Tempo-invariant Audio Queries

15 September 2018
Matthias Dorfer
Jan Hajic
Gerhard Widmer
ArXivPDFHTML
Abstract

Current models for audio--sheet music retrieval via multimodal embedding space learning use convolutional neural networks with a fixed-size window for the input audio. Depending on the tempo of a query performance, this window captures more or less musical content, while notehead density in the score is largely tempo-independent. In this work we address this disparity with a soft attention mechanism, which allows the model to encode only those parts of an audio excerpt that are most relevant with respect to efficient query codes. Empirical results on classical piano music indicate that attention is beneficial for retrieval performance, and exhibits intuitively appealing behavior.

View on arXiv
Comments on this paper