ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.05255
11
83

SQL-to-Text Generation with Graph-to-Sequence Model

14 September 2018
Kun Xu
Lingfei Wu
Zhiguo Wang
Liwei Chen
V. Sheinin
    GNN
    RALM
ArXivPDFHTML
Abstract

Previous work approaches the SQL-to-text generation task using vanilla Seq2Seq models, which may not fully capture the inherent graph-structured information in SQL query. In this paper, we first introduce a strategy to represent the SQL query as a directed graph and then employ a graph-to-sequence model to encode the global structure information into node embeddings. This model can effectively learn the correlation between the SQL query pattern and its interpretation. Experimental results on the WikiSQL dataset and Stackoverflow dataset show that our model significantly outperforms the Seq2Seq and Tree2Seq baselines, achieving the state-of-the-art performance.

View on arXiv
Comments on this paper