ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.04918
11
4

Coordination-driven learning in multi-agent problem spaces

13 September 2018
Sean L. Barton
Nicholas R. Waytowich
Derrik E. Asher
ArXivPDFHTML
Abstract

We discuss the role of coordination as a direct learning objective in multi-agent reinforcement learning (MARL) domains. To this end, we present a novel means of quantifying coordination in multi-agent systems, and discuss the implications of using such a measure to optimize coordinated agent policies. This concept has important implications for adversary-aware RL, which we take to be a sub-domain of multi-agent learning.

View on arXiv
Comments on this paper