ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.02945
19
4

Visual Relationship Prediction via Label Clustering and Incorporation of Depth Information

9 September 2018
Hsuan-Kung Yang
A. Cheng
Kuan-Wei Ho
Tsu-Jui Fu
Chun-Yi Lee
    VLM
ArXivPDFHTML
Abstract

In this paper, we investigate the use of an unsupervised label clustering technique and demonstrate that it enables substantial improvements in visual relationship prediction accuracy on the Person in Context (PIC) dataset. We propose to group object labels with similar patterns of relationship distribution in the dataset into fewer categories. Label clustering not only mitigates both the large classification space and class imbalance issues, but also potentially increases data samples for each clustered category. We further propose to incorporate depth information as an additional feature into the instance segmentation model. The additional depth prediction path supplements the relationship prediction model in a way that bounding boxes or segmentation masks are unable to deliver. We have rigorously evaluated the proposed techniques and performed various ablation analysis to validate the benefits of them.

View on arXiv
Comments on this paper