ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.02482
12
17

BiasedWalk: Biased Sampling for Representation Learning on Graphs

7 September 2018
Duong Nguyen
Fragkiskos D. Malliaros
ArXivPDFHTML
Abstract

Network embedding algorithms are able to learn latent feature representations of nodes, transforming networks into lower dimensional vector representations. Typical key applications, which have effectively been addressed using network embeddings, include link prediction, multilabel classification and community detection. In this paper, we propose BiasedWalk, a scalable, unsupervised feature learning algorithm that is based on biased random walks to sample context information about each node in the network. Our random-walk based sampling can behave as Breath-First-Search (BFS) and Depth-First-Search (DFS) samplings with the goal to capture homophily and role equivalence between the nodes in the network. We have performed a detailed experimental evaluation comparing the performance of the proposed algorithm against various baseline methods, on several datasets and learning tasks. The experiment results show that the proposed method outperforms the baseline ones in most of the tasks and datasets.

View on arXiv
Comments on this paper