ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.02233
72
43
v1v2v3v4 (latest)

Applying Deep Learning to Derivatives Valuation

6 September 2018
Ryan Ferguson
Andrew Green
ArXiv (abs)PDFHTML
Abstract

The universal approximation theorem of artificial neural networks states that a forward feed network with a single hidden layer can approximate any continuous function, given a finite number of hidden units under mild constraints on the activation functions (see Hornik, 1991; Cybenko, 1989). Deep neural networks are preferred over shallow neural networks, as the later can be shown to require an exponentially larger number of hidden units (Telgarsky, 2016). This paper applies deep learning to train deep artificial neural networks to approximate derivative valuation functions using a basket option as an example. To do so it develops a Monte Carlo based sampling technique to derive appropriate training and test data sets. The paper explores a range of network geometries. The performance of the training phase and the inference phase are presented using GPU technology.

View on arXiv
Comments on this paper