ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.01293
  4. Cited By
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory

Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory

5 September 2018
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
ArXivPDFHTML

Papers citing "Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory"

32 / 32 papers shown
Title
Scalable Thompson Sampling via Optimal Transport
Scalable Thompson Sampling via Optimal Transport
Ruiyi Zhang
Zheng Wen
Changyou Chen
Lawrence Carin
OT
55
20
0
19 Feb 2019
Stochastic Zeroth-order Discretizations of Langevin Diffusions for
  Bayesian Inference
Stochastic Zeroth-order Discretizations of Langevin Diffusions for Bayesian Inference
Abhishek Roy
Lingqing Shen
Krishnakumar Balasubramanian
Saeed Ghadimi
66
6
0
04 Feb 2019
Stein Variational Gradient Descent as Moment Matching
Stein Variational Gradient Descent as Moment Matching
Qiang Liu
Dilin Wang
72
38
0
27 Oct 2018
Policy Optimization as Wasserstein Gradient Flows
Policy Optimization as Wasserstein Gradient Flows
Ruiyi Zhang
Changyou Chen
Chunyuan Li
Lawrence Carin
52
68
0
09 Aug 2018
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal
  Transport and Diffusions
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions
Antoine Liutkus
Umut Simsekli
Szymon Majewski
Alain Durmus
Fabian-Robert Stöter
DiffM
75
122
0
21 Jun 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
49
89
0
29 May 2018
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Xiang Cheng
Niladri S. Chatterji
Yasin Abbasi-Yadkori
Peter L. Bartlett
Michael I. Jordan
47
166
0
04 May 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
60
87
0
15 Feb 2018
Learning Structural Weight Uncertainty for Sequential Decision-Making
Learning Structural Weight Uncertainty for Sequential Decision-Making
Ruiyi Zhang
Chunyuan Li
Changyou Chen
Lawrence Carin
BDL
UQCV
60
26
0
30 Dec 2017
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
55
67
0
30 Nov 2017
Stein Variational Message Passing for Continuous Graphical Models
Stein Variational Message Passing for Continuous Graphical Models
Dilin Wang
Zhe Zeng
Qiang Liu
52
3
0
20 Nov 2017
Message Passing Stein Variational Gradient Descent
Message Passing Stein Variational Gradient Descent
Jingwei Zhuo
Chang-rui Liu
Jiaxin Shi
Jun Zhu
Ning Chen
Bo Zhang
54
92
0
13 Nov 2017
User-friendly guarantees for the Langevin Monte Carlo with inaccurate
  gradient
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
65
296
0
29 Sep 2017
Learning to Draw Samples with Amortized Stein Variational Gradient
  Descent
Learning to Draw Samples with Amortized Stein Variational Gradient Descent
Yihao Feng
Dilin Wang
Qiang Liu
GAN
BDL
58
81
0
20 Jul 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex
  Optimization
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
68
205
0
20 Jul 2017
Stein Variational Gradient Descent as Gradient Flow
Stein Variational Gradient Descent as Gradient Flow
Qiang Liu
OT
67
275
0
25 Apr 2017
Stein Variational Policy Gradient
Stein Variational Policy Gradient
Yang Liu
Prajit Ramachandran
Qiang Liu
Jian-wei Peng
66
139
0
07 Apr 2017
Reinforcement Learning with Deep Energy-Based Policies
Reinforcement Learning with Deep Energy-Based Policies
Tuomas Haarnoja
Haoran Tang
Pieter Abbeel
Sergey Levine
92
1,339
0
27 Feb 2017
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Yuchen Zhang
Percy Liang
Moses Charikar
61
236
0
18 Feb 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
70
521
0
13 Feb 2017
On the Convergence of Stochastic Gradient MCMC Algorithms with
  High-Order Integrators
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
66
161
0
21 Oct 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
65
1,091
0
16 Aug 2016
Structured and Efficient Variational Deep Learning with Matrix Gaussian
  Posteriors
Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors
Christos Louizos
Max Welling
BDL
60
257
0
15 Mar 2016
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural
  Networks
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
79
325
0
23 Dec 2015
A Complete Recipe for Stochastic Gradient MCMC
A Complete Recipe for Stochastic Gradient MCMC
Yian Ma
Tianqi Chen
E. Fox
BDL
SyDa
60
486
0
15 Jun 2015
Stochastic Expectation Propagation
Stochastic Expectation Propagation
Yingzhen Li
Jose Miguel Hernandez-Lobato
Richard Turner
122
115
0
12 Jun 2015
High-Dimensional Continuous Control Using Generalized Advantage
  Estimation
High-Dimensional Continuous Control Using Generalized Advantage Estimation
John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
OffRL
82
3,399
0
08 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
294
4,167
0
21 May 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
171
1,886
0
20 May 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
108
944
0
18 Feb 2015
Consistency and fluctuations for stochastic gradient Langevin dynamics
Consistency and fluctuations for stochastic gradient Langevin dynamics
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
60
234
0
01 Sep 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
104
908
0
17 Feb 2014
1