Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.01293
Cited By
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
5 September 2018
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory"
32 / 32 papers shown
Title
Scalable Thompson Sampling via Optimal Transport
Ruiyi Zhang
Zheng Wen
Changyou Chen
Lawrence Carin
OT
55
20
0
19 Feb 2019
Stochastic Zeroth-order Discretizations of Langevin Diffusions for Bayesian Inference
Abhishek Roy
Lingqing Shen
Krishnakumar Balasubramanian
Saeed Ghadimi
66
6
0
04 Feb 2019
Stein Variational Gradient Descent as Moment Matching
Qiang Liu
Dilin Wang
72
38
0
27 Oct 2018
Policy Optimization as Wasserstein Gradient Flows
Ruiyi Zhang
Changyou Chen
Chunyuan Li
Lawrence Carin
52
68
0
09 Aug 2018
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions
Antoine Liutkus
Umut Simsekli
Szymon Majewski
Alain Durmus
Fabian-Robert Stöter
DiffM
75
122
0
21 Jun 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
49
89
0
29 May 2018
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Xiang Cheng
Niladri S. Chatterji
Yasin Abbasi-Yadkori
Peter L. Bartlett
Michael I. Jordan
47
166
0
04 May 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
60
87
0
15 Feb 2018
Learning Structural Weight Uncertainty for Sequential Decision-Making
Ruiyi Zhang
Chunyuan Li
Changyou Chen
Lawrence Carin
BDL
UQCV
60
26
0
30 Dec 2017
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
55
67
0
30 Nov 2017
Stein Variational Message Passing for Continuous Graphical Models
Dilin Wang
Zhe Zeng
Qiang Liu
52
3
0
20 Nov 2017
Message Passing Stein Variational Gradient Descent
Jingwei Zhuo
Chang-rui Liu
Jiaxin Shi
Jun Zhu
Ning Chen
Bo Zhang
54
92
0
13 Nov 2017
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
65
296
0
29 Sep 2017
Learning to Draw Samples with Amortized Stein Variational Gradient Descent
Yihao Feng
Dilin Wang
Qiang Liu
GAN
BDL
58
81
0
20 Jul 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
68
205
0
20 Jul 2017
Stein Variational Gradient Descent as Gradient Flow
Qiang Liu
OT
67
275
0
25 Apr 2017
Stein Variational Policy Gradient
Yang Liu
Prajit Ramachandran
Qiang Liu
Jian-wei Peng
66
139
0
07 Apr 2017
Reinforcement Learning with Deep Energy-Based Policies
Tuomas Haarnoja
Haoran Tang
Pieter Abbeel
Sergey Levine
92
1,339
0
27 Feb 2017
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Yuchen Zhang
Percy Liang
Moses Charikar
61
236
0
18 Feb 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
70
521
0
13 Feb 2017
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
66
161
0
21 Oct 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
65
1,091
0
16 Aug 2016
Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors
Christos Louizos
Max Welling
BDL
60
257
0
15 Mar 2016
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
79
325
0
23 Dec 2015
A Complete Recipe for Stochastic Gradient MCMC
Yian Ma
Tianqi Chen
E. Fox
BDL
SyDa
60
486
0
15 Jun 2015
Stochastic Expectation Propagation
Yingzhen Li
Jose Miguel Hernandez-Lobato
Richard Turner
122
115
0
12 Jun 2015
High-Dimensional Continuous Control Using Generalized Advantage Estimation
John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
OffRL
82
3,399
0
08 Jun 2015
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
294
4,167
0
21 May 2015
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
171
1,886
0
20 May 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
108
944
0
18 Feb 2015
Consistency and fluctuations for stochastic gradient Langevin dynamics
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
60
234
0
01 Sep 2014
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
104
908
0
17 Feb 2014
1