ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.00898
25
24

Image Reassembly Combining Deep Learning and Shortest Path Problem

4 September 2018
Marie-Morgane Paumard
David Picard
Hedi Tabia
    OCL
    3DV
ArXivPDFHTML
Abstract

This paper addresses the problem of reassembling images from disjointed fragments. More specifically, given an unordered set of fragments, we aim at reassembling one or several possibly incomplete images. The main contributions of this work are: 1) several deep neural architectures to predict the relative position of image fragments that outperform the previous state of the art; 2) casting the reassembly problem into the shortest path in a graph problem for which we provide several construction algorithms depending on available information; 3) a new dataset of images taken from the Metropolitan Museum of Art (MET) dedicated to image reassembly for which we provide a clear setup and a strong baseline.

View on arXiv
Comments on this paper