ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.00773
49
75

Sequence-to-Action: End-to-End Semantic Graph Generation for Semantic Parsing

4 September 2018
Bo Chen
Le Sun
Xianpei Han
    GNN
ArXivPDFHTML
Abstract

This paper proposes a neural semantic parsing approach -- Sequence-to-Action, which models semantic parsing as an end-to-end semantic graph generation process. Our method simultaneously leverages the advantages from two recent promising directions of semantic parsing. Firstly, our model uses a semantic graph to represent the meaning of a sentence, which has a tight-coupling with knowledge bases. Secondly, by leveraging the powerful representation learning and prediction ability of neural network models, we propose a RNN model which can effectively map sentences to action sequences for semantic graph generation. Experiments show that our method achieves state-of-the-art performance on OVERNIGHT dataset and gets competitive performance on GEO and ATIS datasets.

View on arXiv
Comments on this paper