ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.10722
17
9

Bayesian quadrature and energy minimization for space-filling design

31 August 2018
L. Pronzato
A. Zhigljavsky
ArXivPDFHTML
Abstract

A standard objective in computer experiments is to approximate the behaviour of an unknown function on a compact domain from a few evaluations inside the domain. When little is known about the function, space-filling design is advisable: typically, points of evaluation spread out across the available space are obtained by minimizing a geometrical (for instance, covering radius) or a discrepancy criterion measuring distance to uniformity. The paper investigates connections between design for integration (quadrature design), construction of the (continuous) BLUE for the location model, space-filling design, and minimization of energy (kernel discrepancy) for signed measures. Integrally strictly positive definite kernels define strictly convex energy functionals, with an equivalence between the notions of potential and directional derivative, showing the strong relation between discrepancy minimization and more traditional design of optimal experiments. In particular, kernel herding algorithms, which are special instances of vertex-direction methods used in optimal design, can be applied to the construction of point sequences with suitable space-filling properties.

View on arXiv
Comments on this paper