ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.10326
59
19
v1v2v3 (latest)

Generalize Symbolic Knowledge With Neural Rule Engine

30 August 2018
Shen Li
Hengru Xu
Zhengdong Lu
    NAI
ArXiv (abs)PDFHTML
Abstract

As neural networks have dominated the state-of-the-art results in a wide range of NLP tasks, it attracts considerable attention to improve the performance of neural models by integrating symbolic knowledge. Different from existing works, this paper investigates the combination of these two powerful paradigms from the knowledge-driven side. We propose Neural Rule Engine (NRE), which can learn knowledge explicitly from logic rules and then generalize them implicitly with neural networks. NRE is implemented with neural module networks in which each module represents an action of a logic rule. The experiments show that NRE could greatly improve the generalization abilities of logic rules with a significant increase in recall. Meanwhile, the precision is still maintained at a high level.

View on arXiv
Comments on this paper