16
2

Semantic Matching Against a Corpus: New Applications and Methods

Abstract

We consider the case of a domain expert who wishes to explore the extent to which a particular idea is expressed in a text collection. We propose the task of semantically matching the idea, expressed as a natural language proposition, against a corpus. We create two preliminary tasks derived from existing datasets, and then introduce a more realistic one on disaster recovery designed for emergency managers, whom we engaged in a user study. On the latter, we find that a new model built from natural language entailment data produces higher-quality matches than simple word-vector averaging, both on expert-crafted queries and on ones produced by the subjects themselves. This work provides a proof-of-concept for such applications of semantic matching and illustrates key challenges.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.