ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.09180
10
24

What do character-level models learn about morphology? The case of dependency parsing

28 August 2018
Clara Vania
Andreas Grivas
Adam Lopez
    AI4CE
ArXivPDFHTML
Abstract

When parsing morphologically-rich languages with neural models, it is beneficial to model input at the character level, and it has been claimed that this is because character-level models learn morphology. We test these claims by comparing character-level models to an oracle with access to explicit morphological analysis on twelve languages with varying morphological typologies. Our results highlight many strengths of character-level models, but also show that they are poor at disambiguating some words, particularly in the face of case syncretism. We then demonstrate that explicitly modeling morphological case improves our best model, showing that character-level models can benefit from targeted forms of explicit morphological modeling.

View on arXiv
Comments on this paper