ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.09105
50
42
v1v2v3v4 (latest)

SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning

28 August 2018
Marvin Zhang
Sharad Vikram
Laura M. Smith
Pieter Abbeel
Matthew J. Johnson
Sergey Levine
    OffRL
ArXiv (abs)PDFHTML
Abstract

Model-based reinforcement learning (RL) has proven to be a data efficient approach for learning control tasks but is difficult to utilize in domains with complex observations such as images. In this paper, we present a method for learning representations that are suitable for iterative model-based policy improvement, even when the underlying dynamical system has complex dynamics and image observations, in that these representations are optimized for inferring simple dynamics and cost models given data from the current policy. This enables a model-based RL method based on the linear-quadratic regulator (LQR) to be used for systems with image observations. We evaluate our approach on a range of robotics tasks, including manipulation with a real-world robotic arm directly from images. We find that our method produces substantially better final performance than other model-based RL methods while being significantly more efficient than model-free RL.

View on arXiv
Comments on this paper