ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.08994
11
92

Data Poisoning Attacks against Online Learning

27 August 2018
Yizhen Wang
Kamalika Chaudhuri
    AAML
ArXivPDFHTML
Abstract

We consider data poisoning attacks, a class of adversarial attacks on machine learning where an adversary has the power to alter a small fraction of the training data in order to make the trained classifier satisfy certain objectives. While there has been much prior work on data poisoning, most of it is in the offline setting, and attacks for online learning, where training data arrives in a streaming manner, are not well understood. In this work, we initiate a systematic investigation of data poisoning attacks for online learning. We formalize the problem into two settings, and we propose a general attack strategy, formulated as an optimization problem, that applies to both with some modifications. We propose three solution strategies, and perform extensive experimental evaluation. Finally, we discuss the implications of our findings for building successful defenses.

View on arXiv
Comments on this paper