ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.08685
25
139

HMS-Net: Hierarchical Multi-scale Sparsity-invariant Network for Sparse Depth Completion

27 August 2018
Zixuan Huang
Junming Fan
Shenggan Cheng
Shuai Yi
Xiaogang Wang
Hongsheng Li
    3DV
ArXivPDFHTML
Abstract

Dense depth cues are important and have wide applications in various computer vision tasks. In autonomous driving, LIDAR sensors are adopted to acquire depth measurements around the vehicle to perceive the surrounding environments. However, depth maps obtained by LIDAR are generally sparse because of its hardware limitation. The task of depth completion attracts increasing attention, which aims at generating a dense depth map from an input sparse depth map. To effectively utilize multi-scale features, we propose three novel sparsity-invariant operations, based on which, a sparsity-invariant multi-scale encoder-decoder network (HMS-Net) for handling sparse inputs and sparse feature maps is also proposed. Additional RGB features could be incorporated to further improve the depth completion performance. Our extensive experiments and component analysis on two public benchmarks, KITTI depth completion benchmark and NYU-depth-v2 dataset, demonstrate the effectiveness of the proposed approach. As of Aug. 12th, 2018, on KITTI depth completion leaderboard, our proposed model without RGB guidance ranks first among all peer-reviewed methods without using RGB information, and our model with RGB guidance ranks second among all RGB-guided methods.

View on arXiv
Comments on this paper