ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.07604
25
13

Review-Driven Multi-Label Music Style Classification by Exploiting Style Correlations

23 August 2018
Guangxiang Zhao
Jingjing Xu
Qi Zeng
Xuancheng Ren
    VLM
ArXivPDFHTML
Abstract

This paper explores a new natural language processing task, review-driven multi-label music style classification. This task requires the system to identify multiple styles of music based on its reviews on websites. The biggest challenge lies in the complicated relations of music styles. It has brought failure to many multi-label classification methods. To tackle this problem, we propose a novel deep learning approach to automatically learn and exploit style correlations. The proposed method consists of two parts: a label-graph based neural network, and a soft training mechanism with correlation-based continuous label representation. Experimental results show that our approach achieves large improvements over the baselines on the proposed dataset. Especially, the micro F1 is improved from 53.9 to 64.5, and the one-error is reduced from 30.5 to 22.6. Furthermore, the visualized analysis shows that our approach performs well in capturing style correlations.

View on arXiv
Comments on this paper