ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.06696
17
14

Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction

20 August 2018
Dmitry Ustalov
Alexander Panchenko
Chris Biemann
Simone Paolo Ponzetto
ArXivPDFHTML
Abstract

We present a detailed theoretical and computational analysis of the Watset meta-algorithm for fuzzy graph clustering, which has been found to be widely applicable in a variety of domains. This algorithm creates an intermediate representation of the input graph that reflects the "ambiguity" of its nodes. Then, it uses hard clustering to discover clusters in this "disambiguated" intermediate graph. After outlining the approach and analyzing its computational complexity, we demonstrate that Watset shows competitive results in three applications: unsupervised synset induction from a synonymy graph, unsupervised semantic frame induction from dependency triples, and unsupervised semantic class induction from a distributional thesaurus. Our algorithm is generic and can be also applied to other networks of linguistic data.

View on arXiv
Comments on this paper