ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.06492
56
72

Benchmarking Automatic Machine Learning Frameworks

17 August 2018
Adithya Balaji
A. Allen
ArXiv (abs)PDFHTML
Abstract

AutoML serves as the bridge between varying levels of expertise when designing machine learning systems and expedites the data science process. A wide range of techniques is taken to address this, however there does not exist an objective comparison of these techniques. We present a benchmark of current open source AutoML solutions using open source datasets. We test auto-sklearn, TPOT, auto_ml, and H2O's AutoML solution against a compiled set of regression and classification datasets sourced from OpenML and find that auto-sklearn performs the best across classification datasets and TPOT performs the best across regression datasets.

View on arXiv
Comments on this paper