ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.05599
14
55

Improving Conditional Sequence Generative Adversarial Networks by Stepwise Evaluation

16 August 2018
Yi-Lin Tuan
Hung-yi Lee
    GAN
ArXivPDFHTML
Abstract

Sequence generative adversarial networks (SeqGAN) have been used to improve conditional sequence generation tasks, for example, chit-chat dialogue generation. To stabilize the training of SeqGAN, Monte Carlo tree search (MCTS) or reward at every generation step (REGS) is used to evaluate the goodness of a generated subsequence. MCTS is computationally intensive, but the performance of REGS is worse than MCTS. In this paper, we propose stepwise GAN (StepGAN), in which the discriminator is modified to automatically assign scores quantifying the goodness of each subsequence at every generation step. StepGAN has significantly less computational costs than MCTS. We demonstrate that StepGAN outperforms previous GAN-based methods on both synthetic experiment and chit-chat dialogue generation.

View on arXiv
Comments on this paper