ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.05352
11
1

Sparse Multivariate ARCH Models: Finite Sample Properties

16 August 2018
B. Poignard
ArXivPDFHTML
Abstract

We provide finite sample properties of sparse multivariate ARCH processes, where the linear representation of ARCH models allows for an ordinary least squares estimation. Under the restricted strong convexity of the unpenalized loss function, regularity conditions on the penalty function, strict stationary and beta-mixing process, we prove non-asymptotic error bounds on the regularized ARCH estimator. Based on the primal-dual witness method of Loh and Wainwright (2017), we establish variable selection consistency, including the case when the penalty function is non-convex. These theoretical results are supported by empirical studies.

View on arXiv
Comments on this paper