ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.02316
21
0

Modelling hidden structure of signals in group data analysis with modified (Lr, 1) and block-term decompositions

7 August 2018
P. Kharyuk
Ivan Oseledets
ArXiv (abs)PDFHTML
Abstract

This work is devoted to elaboration on the idea to use block term decomposition for group data analysis and to raise the possibility of modelling group activity with (Lr, 1) and Tucker blocks. A new generalization of block tensor decomposition was considered in application to group data analysis. Suggested approach was evaluated on multilabel classification task for a set of images. This contribution also reports results of investigation on clustering with proposed tensor models in comparison with known matrix models, namely common orthogonal basis extraction and group independent component analysis.

View on arXiv
Comments on this paper