ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.02229
12
41

Grassmannian Learning: Embedding Geometry Awareness in Shallow and Deep Learning

7 August 2018
Jiayao Zhang
Guangxu Zhu
R. Heath
Kaibin Huang
ArXivPDFHTML
Abstract

Modern machine learning algorithms have been adopted in a range of signal-processing applications spanning computer vision, natural language processing, and artificial intelligence. Many relevant problems involve subspace-structured features, orthogonality constrained or low-rank constrained objective functions, or subspace distances. These mathematical characteristics are expressed naturally using the Grassmann manifold. Unfortunately, this fact is not yet explored in many traditional learning algorithms. In the last few years, there have been growing interests in studying Grassmann manifold to tackle new learning problems. Such attempts have been reassured by substantial performance improvements in both classic learning and learning using deep neural networks. We term the former as shallow and the latter deep Grassmannian learning. The aim of this paper is to introduce the emerging area of Grassmannian learning by surveying common mathematical problems and primary solution approaches, and overviewing various applications. We hope to inspire practitioners in different fields to adopt the powerful tool of Grassmannian learning in their research.

View on arXiv
Comments on this paper