ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.00116
24
10

Cognitive Techniques for Early Detection of Cybersecurity Events

1 August 2018
S. Narayanan
Ashwinkumar Ganesan
K. Joshi
Tim Oates
A. Joshi
Timothy W. Finin
ArXivPDFHTML
Abstract

The early detection of cybersecurity events such as attacks is challenging given the constantly evolving threat landscape. Even with advanced monitoring, sophisticated attackers can spend as many as 146 days in a system before being detected. This paper describes a novel, cognitive framework that assists a security analyst by exploiting the power of semantically rich knowledge representation and reasoning with machine learning techniques. Our Cognitive Cybersecurity system ingests information from textual sources, and various agents representing host and network-based sensors, and represents this information in a knowledge graph. This graph uses terms from an extended version of the Unified Cybersecurity Ontology. The system reasons over the knowledge graph to derive better actionable intelligence to security administrators, thus decreasing their cognitive load and increasing their confidence in the system. We have developed a proof of concept framework for our approach and demonstrate its capabilities using a custom-built ransomware instance that is similar to WannaCry.

View on arXiv
Comments on this paper