ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.10875
23
320

TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing

28 July 2018
Augustus Odena
Ian Goodfellow
    AAML
ArXivPDFHTML
Abstract

Machine learning models are notoriously difficult to interpret and debug. This is particularly true of neural networks. In this work, we introduce automated software testing techniques for neural networks that are well-suited to discovering errors which occur only for rare inputs. Specifically, we develop coverage-guided fuzzing (CGF) methods for neural networks. In CGF, random mutations of inputs to a neural network are guided by a coverage metric toward the goal of satisfying user-specified constraints. We describe how fast approximate nearest neighbor algorithms can provide this coverage metric. We then discuss the application of CGF to the following goals: finding numerical errors in trained neural networks, generating disagreements between neural networks and quantized versions of those networks, and surfacing undesirable behavior in character level language models. Finally, we release an open source library called TensorFuzz that implements the described techniques.

View on arXiv
Comments on this paper