ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.10439
11
54

Symbolic Execution for Deep Neural Networks

27 July 2018
D. Gopinath
Kaiyuan Wang
Mengshi Zhang
C. Păsăreanu
S. Khurshid
    AAML
ArXivPDFHTML
Abstract

Deep Neural Networks (DNN) are increasingly used in a variety of applications, many of them with substantial safety and security concerns. This paper introduces DeepCheck, a new approach for validating DNNs based on core ideas from program analysis, specifically from symbolic execution. The idea is to translate a DNN into an imperative program, thereby enabling program analysis to assist with DNN validation. A basic translation however creates programs that are very complex to analyze. DeepCheck introduces novel techniques for lightweight symbolic analysis of DNNs and applies them in the context of image classification to address two challenging problems in DNN analysis: 1) identification of important pixels (for attribution and adversarial generation); and 2) creation of 1-pixel and 2-pixel attacks. Experimental results using the MNIST data-set show that DeepCheck's lightweight symbolic analysis provides a valuable tool for DNN validation.

View on arXiv
Comments on this paper