ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.10110
13
2

ToriLLE: Learning Environment for Hand-to-Hand Combat

26 July 2018
Anssi Kanervisto
Ville Hautamaki
ArXivPDFHTML
Abstract

We present Toribash Learning Environment (ToriLLE), a learning environment for machine learning agents based on the video game Toribash. Toribash is a MuJoCo-like environment of two humanoid character fighting each other hand-to-hand, controlled by changing actuation modes of the joints. Competitive nature of Toribash as well its focused domain provide a platform for evaluating self-play methods, and evaluating machine learning agents against human players. In this paper we describe the environment with ToriLLE's capabilities and limitations, and experimentally show its applicability as a learning environment. The source code of the environment and conducted experiments can be found at https://github.com/Miffyli/ToriLLE.

View on arXiv
Comments on this paper