ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.09613
17
12

Asymptotically Optimal Pointwise and Minimax Change-point Detection for General Stochastic Models With a Composite Post-Change Hypothesis

24 July 2018
S. Pergamenchtchikov
A. Tartakovsky
ArXivPDFHTML
Abstract

A weighted Shiryaev-Roberts change detection procedure is shown to approximately minimize the expected delay to detection as well as higher moments of the detection delay among all change-point detection procedures with the given low maximal local probability of a false alarm within a window of a fixed length in pointwise and minimax settings for general non-i.i.d. data models and for the composite post-change hypothesis when the post-change parameter is unknown. We establish very general conditions for the models under which the weighted Shiryaev-Roberts procedure is asymptotically optimal. These conditions are formulated in terms of the rate of convergence in the strong law of large numbers for the log-likelihood ratios between the "change" and "no-change" hypotheses, and we also provide sufficient conditions for a large class of ergodic Markov processes. Examples, where these conditions hold, are given.

View on arXiv
Comments on this paper